ADODB: ActiveX Data Objects2.1 Page 1 of 3

©2007 Microsoft Corporation. All rights reserved.

msdn
-

ActiveX Controls Technical Artides

ADODB: ActiveX Data Objects 2.1

Kenneth Lassesen
Microsoft Cor por ation

March 1, 1999

Summary: Object model and notesfor Active X Data Objects 2.1. (7 printed pages)

e |

EndGffecordSet)
2 FatchComplata]
|| FecardCount Fetch
|_sorts
Source 7 McveComrplets
Steie #
Stotus #
StayinSyne ~

Figure 1. ActiveX Data Objects 2.1 object model

Microsoft® ActiveX® Data O bjects (ADO) provide access to a rich variety of data sources through an OLE DB Provider. Ty pically, the OLE DB Provider is the OLE DB
Provider for ODBC Drivers, effectively granting access to any data source having an ODBC Driver.

ADO is my preference for a data access mechanism and is Microsoft's recom mended choice for future application development. Older technologies such as Remote Data

http: //msdn2.microsoft.com/en-ud library /ms968488(d=printer).aspx 10/20/2007

ADODB: ActiveX Data Objects2.1 Page2 of 3

Objects (RDO) and D ata Access Objects (DAO) are DOA (dead on arrival) for any new development I do.

ADO recordsets are very similar to RDO/DAO recordsets with improve ments and simplifications. A few of them are:

No need to call an .edit method to start editing

The ability to move a recordset from a server to a client as a file using the lightweig ht, client-side ADOR object (which lacks Connection and Com mand objects of
ADO DB)

Faster e xecution than older technologies

Less collections

Support for events on the Connection object, simplifying coding

Most developers are very familiar with ADO's ancestors, DAO and RDO. A few items of note:
Cancel applies to asynchronous Execute and Open; an error will occur if called otherwise.
Recordset.Save writes the recordset to a physical file. No more writing out the data as text!

MarshalOptionscontrols whether a dient-side recordset sends back all records or only the modified records.

PageSize, PageCount, AbsolutePage are ideally for Web sites. They allow you to request the 1231 page of records where there are 63 records on a page—no more
counting through records.

Recordset.Stay InSyncis part of the data shaping available in ADODB. Version 2.1 adds grandchild aggregates, reshaping and param eterized commands using COMPUTE
to the earlier data shaping, and hierarchical recordsets ofversion 2.0.

Using ADODB on the Web

ADO may be used in many environments, one ofthe most popular ofwhich is Internet Information Services (11S) Active Server Pages (ASP). To display a recordset in an
HTML page from an SQL statement and a DSN requires just a few lines of generic code, as shown here :

“Copy Code

<!— #Include file="adovbs. inc" —>
<SCRIPT RUNAT=SERVER L ANGUAGE=VBSCRI PT>
Sub SQL2Tab le(strSQL, strDSN) ~A Generic Function
Dim i
Set rs=Server.CreateObject(""ADODB.Recordset'™)
rs.Open strSQL ,strDSN
Response.Write "<TABLE BORDER=1>"
“Write out Field Names
Response.Write "<TR>"
For i=0 to rs. fields.count-1
Response.Write "<TH>"+rs(i).Name+"</TH>"
Next
Response.Write "</TR>"
“Write out Data
Do while not rs.eof
Response. Write " <TR>
For i=0 to rs. fields.count-1
Response .Write "<TD>
Response .Write rs(i)
Response .Write "</TD>
Next
Response.Write "</TR>
rs .mov ene xt
Loop
Response.Write "</TABLE>"
End Sub
</SCRIPT>

The "adovbs.inc" file supplies the AD O constants because they are not intrinsically available in an .asp file. All of the "Response.Write" lines are outputting HTML into a Web
page (with automatic conversion of data types).

If we put the preceding into an include file, a Web site may be coded with simple pages as shown in the following six lines:

“Copy Code

<HTM L><BODY >
<!— #Include fi
<%

="SQL2TABLE.inc" —>

SQL2TABLE "Select Item,Name, Price from MyCatalog Order by Name","DSN=DogFood"
%>
</BODY></HTML>

The e xecution of stored procedures in ADO is also simple. We start by creating a set of simple subroutinesto make the actual code simpler to read and debug, and save
the amount of ty ping that must occur.

-1Copy Code

<!1— #Include file="adovbs. inc" ->
<SCRIPT RUNAT=SERVER L ANGUAGE =VBSCRI PT>
</SCRIPT>
function spX(spName,strDSN)
dim cnnl, cmdSP
~ Open connection.
Set cnnl = Server.CreateObject (‘ADODB .Connec tion*)
cnnl.CursorLocation = adUseClient
cnnl.CommandT ime out= 600
cnnl.Open strDSN
~ Open command object
Set cmdSP= Server.CreateObject (‘ADODB .Command")
cmdSP. Command Text = spName
cmdSP. Command Type = adCmdStoredProc
cmdSP. ActiveConnection = cnnl
SET spX= cmdSP
end function
sub spRet(sp)
sp.Parameters. Append x.CreateParameter("RETURN_VALUE", adlnteger, adParamReturnValue)
end sub
sub spVarChar(sp,parm,pSi ze, pval ue)
sp.Parameters. Append sp.CreateParameter (parm, adChar, adParamlnput, pSize)
sp.Parameters(parm) = pValue
end sub
sub splnt(sp,parm, pvalue)
sp.Parameters. Append sp.CreateParameter (parm, adlnteger, adParaminput)

http: //msdn2.microsoft.com/en-ud library /ms968488(d=printer).aspx 10/20/2007

ADODB: ActiveX Data Objects2.1 Page 3 of 3

sp.Parameters(parm) = pvalue
end sub
</SCRIPT>

These procedures may then be included in any ASP page, resulting in ssimple clean code that iseasy to read and understand :

-:Copy Code
<HTML><BODY>
<!— #Include file="MyADOLibrary.inc" —>
<%
Set MySP=spX("ui_MySP", "DSN=DogFood"
spRet MySP A returned value will occur

spiInt MySP, "@MyAge™, UserAge
spVarChar MySP,"@MyName',40 ,UserName "40 character Name
set rsSP=SP.execute “execute the stored procedure

Because stored procedures may return multiple recordsets, we need to handle them. Assuming we wish to display all ofthe recordsets as HTML, the following code
suffices:

-1Copy Code

Do until rsSP Is Nothing
RS2TABLE rsSP
rsSP=rsSP.NextRecordSet

Loop

%></BODY> </HT ML>

RS2Table isalmost identical to the SQL2TABLE shown, except it takes a results set in as an argument instead of just using an SQL string and a DSN string .

Some Personal Experie nces

My first exposure to ADO was helping my wife with her pet Web site on an IS where she wasdeveloping a pedigree database for Welsh Corgis
(http: //corgi.folkartscom/pedigree/). First, | discovered that the administrators did not have to create a DSN for her Microsoft Access database; instead, | opened it with
the following code:

“Copy Code
Set Dog Conn=Cr eateObj ect(""ADODB. Connection')
DogConn .Open “Driver=Microsoft Access Driver (*msb);DBQ=C:\Corgi\DogTree. Mdb"
If she wanted to use another file-based database system like Microsoft Visual FoxPro®, it isjust as simple. 1f1 wished to fine-tune the connection, it is trivial:
#Copy Code

DogConn .Open = "DRIVER={Microsoft Access Driver (*.mdb)};User Id=admi DBQ=C:\Corgi\DogTree.Mdb; DefaultDir=C:\Corgi;
FIL=MS Access; ImplicitCommi tSync=Yes; MaxBufferSize=512; MaxScanRows=8; PageTimeout=5; SafeTransactions=0;
Threads=3; UserCommitSync=Yes;"

What im pressed me was the speed of ADO—she could display the known pedigree of our dogs back 12 generations (a 21'1 branch tree!) in secondsusing an Access
database asthe source. (Try her Web page yourself!)

When | started developing industrial-grade Web ap plications going against Windows NT and SQL Server, | found that the use of system DSNsoften leads to days tracking
down setup errorson test boxes. The most common error was getting "GetOverLappedResult() " when accessing Windows NT and SQL Server from an 1IS server. The
cause was the DSN being set up (or later changed) to use Named Pipesto connect to Windows NT and SQL Server and not TCP/IP. The solution was to use the following
string to set up the connection with the appropriate network connection:

Set MyConn=CreateOb ject("AD ODB.Connection™)

#Copy Code

MyConn. Open " driver={SQL Server}; server=corwyn; database=Family; UlD=Woof; PWD=Bone; networ k=dbmsscon"
The “network=dbmsscon" parameters determines the network rary to use, in this case TCP/IP.

Conclusion

ADO is a sweet, simple tool that allows accessto many data sources. If you are (or are becoming) a Web developer you will find that it is an indispensable tool for creating
Web sites that perform well and scale to many users.

http: //msdn2.microsoft.com/en-ud library /ms968488(d=printer).aspx 10/20/2007

